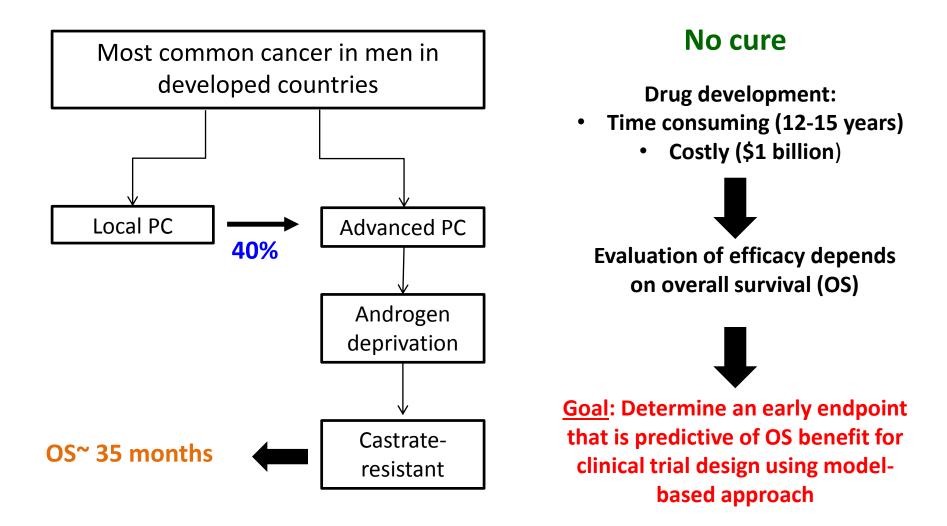


A Joint Model Relating Changes in Prostate Specific Antigen to Survival in Castrate Resistant Prostate Cancer

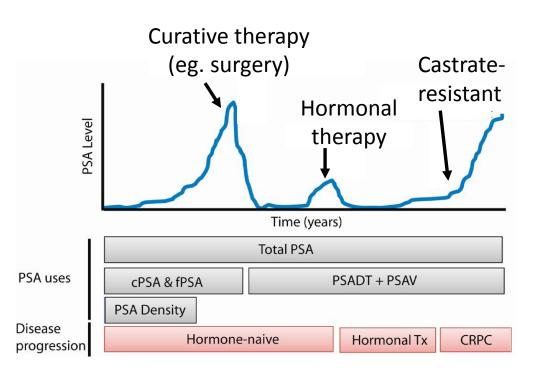
Tu H. Mai, Elizabeth Gray, Manish R. Sharma

Fellow, Committee on Clinical Pharmacology and Pharmacogenomics The University of Chicago

117th ASCPT, 2016, San Diego, CA


Conflict of Interest Statement

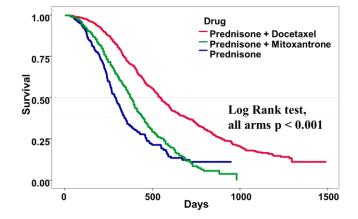
The authors have nothing to disclose


Background

Prostate-Specific Antigen (PSA) as a Biomarker

Adapted from Prensner et al. Sci Transl Med. 2012 Mar 28; 4(127): 127rv3.

- PSA was recognized as a biomarker for monitoring the progression of patients with CRPC
- Easily measured in serum
- Accessible longitudinal data

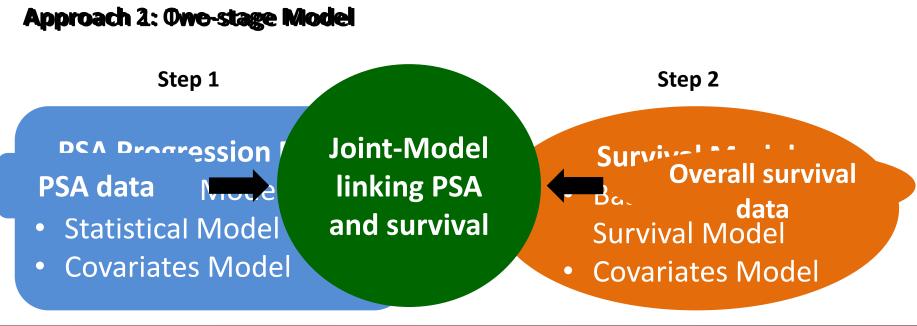


Phase III Clinical Trials

 Project Data Sphere allows access to control-arm data from phase III cancer clinical trials

ProjectDataSphere ID	Ν	Drugs	
1. Prostat_Pfizer_2008_81	201	Prednisone	+ Drug A
2. Prostat_Sanofi_2000_80	253	Prednisone + Mitoxantrone	+ Drug B
3. Prostat_Sanofi_2007_79	282	Prednisone + Mitoxantrone	+ Drug C
4. Prostat_Sanofi_2007_83	457	Prednisone + Docetaxel	+ Drug D
5. Prostat_CougarB_2008_101	253	Prednisone	+ Drug E
6. Prostat_Novacea_2006_89	312	Prednisone + Docetaxel	+ Drug F

Total: 1758 patients



Modeling Strategies

$$PSA(t) = BSL * (e^{(-d^*t)} + e^{(g^*t)} - 1)^*$$

* Stein, W.D., et al.,. Clin Cancer Res, 2011. 17(4): p. 907-17.

BSL: estimated baseline PSAd: rate of decrease in PSAg: PSA growth rate

Estimation of the Parameters

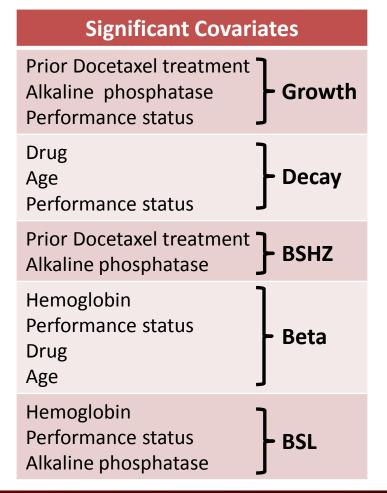
Approach 1: Two-stage model

Estimates of the PSA progression model

Significant covariates in the Cox-regression survival model

Population Parameters	Estimates	Units	BSV (%)
Baseline (BSL)	138	ng/mL	162
Growth	0.00069	1/day	138
Decay	0.0113	1/day	110
Baseline Hazard of dropout	0.0122		

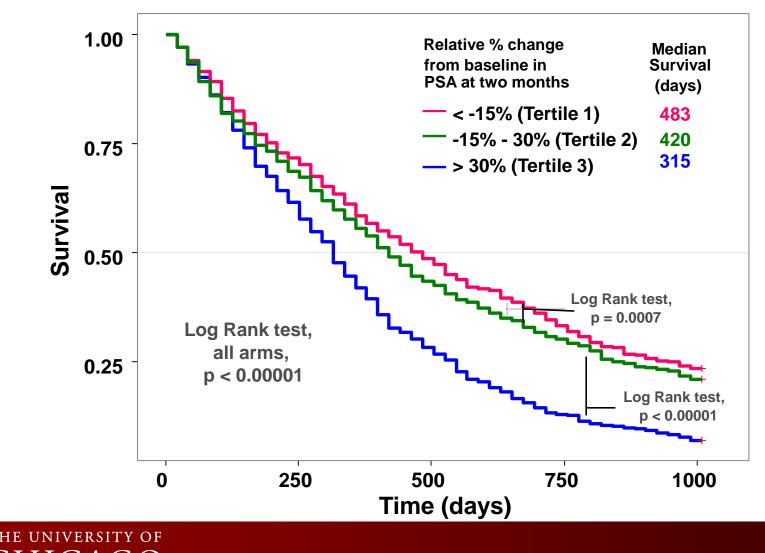
PSA doubling time	
Prior treatment with Docetaxel	
Hemoglobin	
Age	
Performance status (ECOG)	
Alkaline phosphatase	
Diagnosis Day	


Estimation of the Parameters

Approach 2: Joint-model

Population Parameters	Estimates	Units	BSV (%)
Baseline (BSL)	91.4	ng/mL	156
Growth	0.00058	1/day	140
Decay	0.0114	1/day	114
Baseline Hazard of Survival (BSHZ)	0.00087		
Beta	0.248		

 $h_i(t|PSA(t)) = h_0(t) \exp(\beta PSA(t))$


h₀:Weibull hazard function h₀(t)= $\frac{k}{\lambda} \left(\frac{t}{\lambda}\right)^{k-1}$

Predicted Survival of Simulated Data by the Joint-Model

Summary & Future Directions

• CRPC disease progression models were developed with 2 approaches

	Two-stage Model	Joint-Model
PROS	 2nd stage can be easily implemented by non-modelers 	 Evaluate PSA kinetics and survival simultaneously
CONS	 Estimates of PSA kinetics are fixed in cox survival model Requires 2 steps during development 	 More difficult to implement for non-modelers

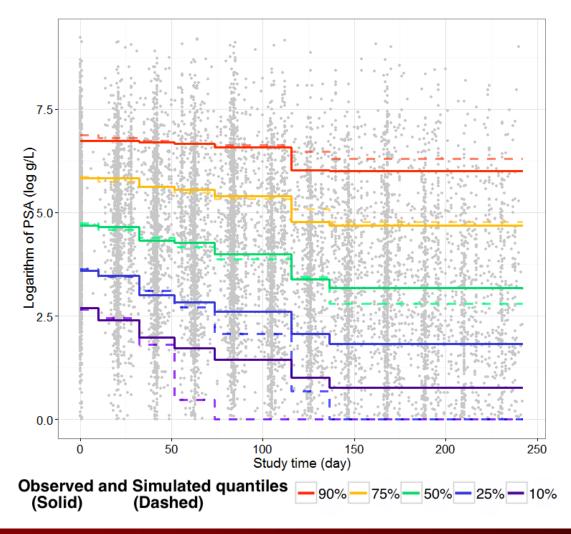
FUTURE DIRECTIONS:

- Simulations will be run to determine the superior model by VPC for survival
- Early PSA-based endpoints will be evaluated by simulations to be used in drug development

Acknowledgement

- Manish R. Sharma, MD.
- Elizabeth Gray, MS.
- Committee on Clinical Pharmacology and Pharmacogenomics
 - Eileen Dolan, Ph.D.
 - Mark Ratain, MD.
 - Michelle Domecki, MS.
- Funding:

University of Chicago Cancer Research Foundation Women's Board and the Division of Biological Sciences



Model Verification of PSA Values

